Bifurcations in Delay Differential Equations and Applications to Tumor and Immune System Interaction Models

نویسندگان

  • Ping Bi
  • Shigui Ruan
چکیده

In this paper, we consider a two-dimensional delay differential system with two delays. By analyzing the distribution of eigenvalues, linear stability of the equilibria and existence of Hopf, Bautin, and Hopf–Hopf bifurcations are obtained in which the time delays are used as the bifurcation parameter. General formula for the direction, period, and stability of the bifurcated periodic solutions are given for codimension one and codimension two bifurcations, including Hopf bifurcation, Bautin bifurcation, and Hopf–Hopf bifurcation. As an application, we study the dynamical behaviors of a model describing the interaction between tumor cells and effector cells of the immune system. Numerical examples and simulations are presented to illustrate the obtained results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GRUNWALD-LETNIKOV SCHEME FOR SYSTEM OF CHRONIC MYELOGENOUS LEUKEMIA FRACTIONAL DIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL OF DRUG TREATMENT

In this article, a mathematical model describing the growth orterminating myelogenous leukemia blood cancer's cells against naive T-celland eective T-cell population of body, presented by fractional dierentialequations. We use this model to analyze the stability of the dynamics, whichoccur in the local interaction of eector-immune cell and tumor cells. Wewill also investigate the optimal contro...

متن کامل

Mathematical Modeling of Cancer Cells and Chemotherapy Protocol Dealing Optimization Using Fuzzy Differential Equations And Lypunov Stability Criterion

Mathematical models can simulate the growth and proliferation of cells in the interaction with healthy cells, the immune system and measure the toxicity of drug and its effects on healthy tissue pay. One of the main goals of modeling the structure and growth of cancer cells is to find a control model suitable for administration among patients. In this study, a new mathematical model is designed...

متن کامل

Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays.

In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of...

متن کامل

A delay differential equation model for tumor growth.

We present a competition model of tumor growth that includes the immune system response and a cycle-phase-specific drug. The model considers three populations: Immune system, population of tumor cells during interphase and population of tumor during mitosis. Delay differential equations are used to model the system to take into account the phases of the cell cycle. We analyze the stability of t...

متن کامل

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013